Monotonic Cubic Spline Interpolation

نویسندگان

  • George Wolberg
  • Itzik Alfy
چکیده

This paper describes the use of cubic splines for interpolating monotonic data sets. Interpolating cubic splines are popular for fitting data because they use low-order polynomials and have C2 continuity, a property that permits them to satisfy a desirable smoothness constraint. Unfortunately, that same constraint often violates another desirable property: monotonicity. The goal of this work is to determine the smoothest possible curve that passes through its control points while simultaneously satisfying the monotonicity constraint. We first describe a set of conditions that form the basis of the monotonic cubic spline interpolation algorithm presented in this paper. The conditions are simplified and consolidated to yield a fast method for determining monotonicity. This result is applied within an energy minimization framework to yield linear and nonlinear optimization-based methods. We consider various energy measures for the optimization objective functions. Comparisons among the different techniques are given, and superior monotonic cubic spline interpolation results are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monotonicity-Preserving Piecewise Rational Cubic Interpolation

An explicit representation of a C1 piecewise rational cubic spline has been developed, which can produce a monotonic interpolant to given monotonic data. The explicit representation is easily constructed, and numerical experiments indicate that the method produces visually pleasing curves. Furthermore, an error analysis of the interpolant is given.

متن کامل

An energy-minimization framework for monotonic cubic spline interpolation

This paper describes the use of cubic splines for interpolating monotonic data sets. Interpolating cubic splines are popular for 1tting data because they use low-order polynomials and have C continuity, a property that permits them to satisfy a desirable smoothness constraint. Unfortunately, that same constraint often violates another desirable property: monotonicity. It is possible for a set o...

متن کامل

Algebraic Rational Cubic Spline with Constrained Control

In this paper a rational cubic algebraic spline with two shape parameters is developed to create a high-order smoothness interpolation using function values and derivative values which are being interpolated. This is a kind of rational cubic interpolation with quadratic denominator. This rational spline interpolant is monotonic interpolant to given monotonic data. The more important achievement...

متن کامل

Geometric Continuity Two-Rational Cubic Spline with Tension Parameters

Abstract— A smooth curve interpolation is very significant in computer graphics or in data visualization. In the present paper -piecewise rational cubic spline function with tension parameter is considered which produces a monotonic interplant to a given monotonic data set. The parameters in the description of the spline curve can be used to modify the shape of the curve, locally and globally. ...

متن کامل

A Smooth Rational Spline for Visualizing Monotone Data

A C curve interpolation scheme for monotonic data has been developed. This scheme uses piecewise rational cubic functions. The two families of parameters, in the description of the rational interpolant, have been constrained to preserve the shape of the data. The monotone rational cubic spline scheme has a unique representation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999